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Humans primarily sense the environment through vision 
and audition but sometimes also use touch to create an 
accurate representation of the world. For example, we 
may use somatosensation to navigate in the dark, iden-
tify objects in opaque containers, or determine the ripe-
ness of fruit. Although the neural correlates of touch 
perception are less understood than vision and audition, 
the primary somatosensory cortex (S1) has been shown 
to play an important role in conscious tactile perception 
(Penfield & Rasmussen, 1950). Indeed, lesions specific 
to S1 (Brochier et al., 1994), as well as transient and 
reversible disruptions to it with transcranial magnetic 
stimulation (TMS; Andre-Obadia et  al., 1999; Cohen 
et  al., 1991; Pascual-Leone et  al., 1994; Seyal et  al., 
1992), result in the loss of conscious touch perception. 
Furthermore, tactile illusions in which there are con-
scious sensations of touch despite the absence of tactile 
stimulation evoke activity in S1 (Blakemore et al., 2005; 
Chen et al., 2003; Schwartz et al., 2004; Valenza et al., 
2004). Tactile sensations in phantom limbs in patients 

with amputations also correlate with activity in corre-
sponding somatotopic regions of S1 (Lotze et al., 2001; 
Roux et al., 2001).

Strikingly, a few patients with damage to somatosen-
sory brain regions, such as S1 or the thalamus, have 
demonstrated numbsense, the ability to unconsciously 
discriminate some attributes of touch despite the inabil-
ity to consciously report it. For example, these patients 
may deny feeling any sensations on the affected regions 
of their bodies but may nevertheless accurately discrimi-
nate the location of a tactile stimulus (Paillard et  al., 
1983; Rossetti et al., 1995, 2001) or whether it was static 
or dynamic (Brochier et al., 1994). Other patients with-
out numbsense have demonstrated the ability to uncon-
sciously process other tactile characteristics, including 
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Abstract
Brain damage or disruption to the primary visual cortex sometimes produces blindsight, a striking condition in which 
patients lose the ability to consciously detect visual information yet retain the ability to discriminate some attributes 
without awareness. Although there have been few demonstrations of somatosensory equivalents of blindsight, the 
lesions that produce “numbsense,” in which patients can make accurate guesses about tactile information without 
awareness, have been rare and localized to different regions of the brain. Despite transient loss of tactile awareness 
in the contralateral hand after transcranial magnetic stimulation (TMS) of the primary somatosensory cortex but not 
TMS of a control site, 12 participants (six female) reliably performed at above-chance levels on a localization task. 
These results demonstrating TMS-induced numbsense implicate a parallel somatosensory pathway that processes the 
location of touch in the absence of awareness and highlight the importance of primary sensory cortices for conscious 
perception.
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vibrotactile frequency (Knecht et al., 1996), stimulus-type 
categories (Aglioti et al., 1998), and three-dimensional 
information (Berti, 2002; Berti et  al., 1999; Maravita, 
1997). These studies suggest distinct neural mechanisms 
for the unconscious processing of different attributes, 
but these mechanisms remain poorly understood because 
of the rarity of numbsense and the variability in the 
lesions that produce it.

In the current study, we assessed the role of S1 in 
numbsense by applying single-pulse TMS over S1 during 
conscious touch perception and unconscious touch-dis-
crimination tasks. After obtaining informed consent, we 
functionally localized the hand area of the right S1 in 12 
neurologically healthy participants who were eligible for 
TMS (see the Method section and Fig. 1a). Subsequent 
to localizing S1, we delivered a near-threshold electro-
cutaneous tactile stimulus to either the left index or the 
left ring finger on 50% of the trials. No tactile stimulus 
was delivered on the remaining 50% of the trials, which 
allowed us to assess using signal detection analyses 
whether the application of single-pulse TMS may have 
produced response biases (see Fig. 1b). Participants 
first reported whether or not they felt the tactile stimu-
lus (i.e., detection task) and then reported or guessed 
on which finger the tactile stimulus was delivered (i.e., 
two-choice location-discrimination task). The critical 
trials for demonstrating numbsense were those on 
which TMS over S1 suppressed conscious somatosen-
sory perception. Performance on tactile-stimulus local-
ization from these trials was compared with performance 
on trials on which the TMS over a control site (four of 
the 12 participants) or TMS over S1 (all 12 participants) 
did not produce touch suppression.

Method

On the basis of the sample sizes, effect sizes, and stan-
dard deviations from previous studies on TMS-induced 
blindsight that used similar designs and dependent vari-
ables (i.e., Boyer et al., 2005; Jolij & Lamme, 2005; Ro 
et  al., 2004), we calculated the sample size needed to 
achieve a power of 80%, which was between four and  
nine participants. After obtaining informed consent 
approved by the City University of New York Institutional 
Review Board, we successfully localized S1 in 12 eligible 
participants (six female, six male; age: M = 25.8 years, 
range = 21–34) who completed the main experiment. Four 
of these 12 participants returned for a second control ses-
sion with TMS over a site 5 cm posterior to the S1 stimula-
tion site to confirm that stimulation sites outside of S1 
would not produce any somatosensory suppression.

TMS

A Magstim Rapid stimulator (The Magstim Company, 
Whitland, United Kingdom) with a 70-mm figure-eight 

coil was used to briefly and reversibly disrupt S1. S1 
was localized by first determining the location and 
intensity of TMS that produced visible twitches of the 
left hand on three out of five trials. After finding the 
hand area of the right motor cortex, we moved the TMS 
coil caudally in 0.5-cm increments and adjusted the 
TMS intensity to 110% of motor threshold until there 
was suppression of tactile sensations on three out of 
five trials. For seven of the participants, TMS at 110% 
of motor-threshold intensity was sufficient to induce 
tactile suppression, whereas for the remaining five par-
ticipants, TMS was increased to an average intensity of 
117% of motor threshold (range = 115%–119%).

MRI

To confirm that our functional-mapping procedure reli-
ably localized S1, we acquired high-resolution structural 
MRI scans from four participants using a Siemens Skyra 
3.0T whole-body scanner (Siemens Medical Solutions, 
Malvern, Pennsylvania). We used a magnetization-prepared 
rapid acquisition with gradient echo (MPRAGE) sequence 
optimized for gray-matter/white-matter contrast with 
0.8-mm-thick sagittal slices and an in-plane resolution 
of 0.8 mm × 0.8 mm. After assessing tactile detection 
and tactile discrimination in the main experiment, we 
digitized each participant’s head using a Polhemus Fas-
trak digitizer (Polhemus, Colchester, Vermont) and 
coregistered standard anatomical landmarks (i.e., 
nasion, inion, left and right preauricular points, and 
vertex), as well as the location of the center of the TMS 
coil, with their MRI scans using MRIcro (Version 1.40) 
and MRIreg (Version 0.995; Rorden & Brett, 2000). 
FreeSurfer (Version 6.0; Dale et al., 1999) was used to 

Statement of Relevance 

Although much of the information bombarding our  
sensory systems, such as a light breeze on one’s arm,  
often goes unnoticed, it may none the less influence 
our behavior by being unconsciously processed in 
the brain. In this research, we found that transient  
and reversible disruption of the pri mary somato-
sensory cortex (S1) with transcranial magnetic stimu-
lation (TMS) can induce numbsense, a striking ability  
in which one can make accurate guesses about tactile  
information without awareness. These findings 
provide evidence that brain areas be yond S1, such as  
subcortical regions and the secon dary somato sen sory 
cortex, may play a role in the unconscious processing 
of numbsense. More impor tantly, they demonstrate 
the necessity of primary sensory cortices in perceptual 
awareness and high light the importance of early brain 
areas in conscious ness.
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create a cortical surface reconstruction, and Surf Ice 
(Version 1.0.20190720; Rorden, 2019) was used to visu-
alize the scalp and cortical surface reconstructions with 
the site of stimulation during the main experiment.

Stimuli and procedures

Electro-cutaneous tactile stimuli were 0.03-ms square-
wave electrical pulses delivered by a Grass Astro-Med 
electrical stimulator (AstroNova, West Warwick, Rhode 
Island) through pairs of two ring electrodes. Each pair 
was attached to the left index and the left ring fingers. 
Prior to the main experiment, each participant’s tactile-
intensity threshold for each finger was found using the 
method of limits, whereby ascending and descending 
series of tactile-stimulus intensities were delivered until 
three of five stimuli could be detected and verbally 
reported. Tactile-stimulus intensity was set at 120% of 

each finger’s respective tactile threshold, and partici-
pants rested their supine left hand on a table in front 
of them for the remainder of the experiment.

Prior to the main experiment, participants completed 
two practice blocks, one without and then one with 
TMS. Each participant completed a total of 320 trials, 
divided into five blocks of 64 trials each, with the order 
of conditions randomized within each block. On 75% 
of the trials, a single TMS pulse was applied over S1. 
On 50% of the trials, a tactile stimulus was delivered 
to the left index or left ring finger at an interval of 
40 ms after the TMS pulse to maximize somatosensory 
suppression.

Data analyses

We used signal detection analyses to compute a bias-
free measure of tactile sensitivity in the TMS-present 

“Did you feel the tactile stimulus?”

0 ms 
75% 25%

500 ms 
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“Did the stimulus occur on the
index finger or the ring finger?”

Fig. 1. Sites of cortical stimulation and stimuli and procedures. An MRI surface reconstruction of the normalized transcranial magnetic 
stimulation (TMS) sites (a) is shown for four participants. Each colored spherical node represents the position of the center of the TMS 
coil for a given participant. The mean axial, sagittal, and coronal position of stimulation, indicated by the intersection of the green lines 
(Montreal Neurological Institute coordinates: x = 52.3, y = −49.2, z = 61.4, respectively), was over the caudal portion of the primary 
somatosensory cortex (S1). The timeline and procedures of the experiment are shown in (b). At 500 ms after the start of 75% of the 
trials, a single TMS pulse (indicated by the lightning bolt) was delivered over S1. On 50% of the trials, a tactile stimulus (indicated by 
lightning bolts) was delivered to the left index finger or left ring finger 40 ms after the TMS pulse. Participants indicated whether or 
not they felt the tactile stimulus and then reported or guessed on which finger it was presented.
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and the TMS-absent trials. Paired-samples t tests were 
used to compare the sensitivity (d′) and criterion (c) 
differences between the TMS and no-TMS conditions. 
To assess the presence of numbsense, we used a one-
sample t test to compare accuracy rates for location 
discrimination on trials in which participants reported 
not feeling the tactile stimulus with a chance-performance 
level of 50%.

Results

When TMS was applied over S1 prior to a tactile stimu-
lus, there was a significant decrease in tactile sensitivity 
compared with the no-TMS trials, t(11) = 6.87, p < .001, 
Cohen’s d = 2.03, 0.96 ≤ d* ≤ 3.1 (see Fig. 2a; Howell, 
2011). Participants reported being unaware of the target 
tactile stimulus on 55.8% (SEM = 8.3%) of the TMS trials, 
compared with 18.9% (SEM = 5%) of no-TMS trials. 
Importantly, this suppression of somatosensory pro-
cessing after TMS of S1 was due to a change in tactile 
sensitivity rather than a change in criterion (see Fig. 
2b). There was no difference in c values between the 
TMS trials and the no-TMS trials, t(11) = 1.83, p > .05, 
Cohen’s d = 0.8, −0.24 ≤ d* ≤ 1.84, indicating that the 
TMS of S1 was effective at decreasing conscious tactile-
perception sensitivity and not at influencing response 
biases.

To assess the effects of S1 TMS on unconscious tactile 
discrimination, we calculated the percentage of correct 
localization responses on TMS trials in which participants 
reported that they did not feel a tactile stimulus. Despite 
participants being unaware of the tactile stimulus, 

performance on the two-choice location-discrimination 
task was significantly above chance levels, t(11) = 2.53, 
p < .03, Cohen’s d = 0.73, −0.58 ≤ d* ≤ 2.04 (see Fig. 3). 
In fact, in some participants, location discrimination was 
near ceiling levels even though participants were not 
able to consciously report feeling these stimuli. This 
result suggests that even in the absence of normal S1 
functioning that affects conscious tactile perception, an 
alternative means for discriminating these tactile stimuli 
remains available.

Further analyses on discrimination performance 
using a binomial generalized linear mixed-effects model 
(GLMM) with participant as a random effect yielded 
estimated log odds ratios of −2.08 (SEM = 0.30) for the 
fixed effect of TMS (z = −7.05, p < .001), −2.82 (SEM = 
0.37) for the fixed effect of detection (z = −7.72, p < 
.001), and 2.05 (SEM = 0.39) for the TMS × Detection 
interaction (z = 5.22, p < .001). This significant interac-
tion likely reflects the smaller change in discrimination 
performance between detected and undetected trials 
with TMS than without TMS, as one would expect with 
the presence of numbsense after TMS disruption of S1. 
A Bayesian sequential analysis showed that the numb-
sense effect was moderate after 11 participants (Bayes 
factor favoring the alternative over the null hypothesis, or 
BF10 = 5.097). Ten of the 12 participants had unconscious-
discrimination rates numerically above chance levels, 
and four of these 10 participants showed statistically 
reliable numbsense in single-participant analyses (all 
χ2s > 9.8462, all ps < .002).

To rule out nonspecific effects of the TMS on tactile 
detection, we measured detection sensitivity following 
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Fig. 2. Conscious tactile-detection performance. Tactile sensitivity (a), as measured by bias-free d′ rates, is shown separately for trials with 
and without transcranial magnetic stimulation (TMS) of the primary somatosensory cortex. Response bias (b), as measured by criterion (c) 
values, is shown separately for the TMS and no-TMS conditions. Colored dots are data points for each participant, and the boxplots illustrate 
the condition means (center lines) and within-participants standard errors (top and bottom edges of boxes). Asterisks indicate a significant 
difference between TMS conditions (p < .001).
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TMS over a control site that was 5 cm caudal to S1 in 
four participants who previously participated in the main 
experiment. As expected (see Fig. 4a), there was no 
suppression of the tactile stimuli when TMS was located 
over a region 5 cm caudal to S1. Tactile-sensitivity levels 

after TMS of this control site were statistically similar to 
those in the no-TMS conditions, t(3) = 0.61, p = .587, 
Cohen’s d = 0.04, −0.11 ≤ d* ≤ 0.18, and significantly 
greater than when TMS was applied over S1, t(3) = 3.60, 
p = .037, Cohen’s d = 0.41, 0.12 ≤ d* ≤ 0.69. Because we 
were able to retest only a minority of the original 12 
participants, we also conducted Bayesian statistical anal-
yses to ensure that this smaller sample size was sufficient 
to rule out any nonspecific effects of the TMS in produc-
ing tactile suppression and the associated numbsense 
results in the main experiment. A Bayesian t test compar-
ing whether detection sensitivity on trials with TMS over 
the control site was any less than on trials without any 
TMS showed moderate evidence for the lack of a differ-
ence (Bayes factor favoring the null hypothesis over the 
alternative hypothesis, or BF01 = 0.305). Bayesian sequen-
tial analysis showed that this moderate evidence for a 
lack of a difference was already apparent after the third 
participant. These expected results demonstrate that TMS 
suppresses tactile perception when delivered over S1 
but not over the posterior parietal cortex.

We also measured above-chance location discrimina-
tion on trials in which participants missed the near-
threshold tactile stimulus even though there was no 
TMS. Figure 4b shows that discrimination performance 
was significantly greater than chance for the no-TMS 
trials, t(9) = 3.16, p = .012, Cohen’s d = 0.99, −0.52 ≤ d* 
≤ 2.52, demonstrating numbsense even without somato-
sensory cortical disruption, as has also been shown 
with blindsight in normal observers (Kolb & Braun, 
1995; but see Morgan et al., 1997; Robichaud & Stelmach, 
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Fig. 3. Unconscious location discrimination in transcranial magnetic 
stimulation (TMS)-induced numbsense. The percentage of correct 
localization responses is shown separately for no-TMS trials, in which 
participants reported feeling the tactile stimulus, and TMS trials, in 
which participants reported not feeling the tactile stimulus. Colored 
dots are data points for each participant, and the boxplots illustrate 
the condition means (center lines) and within-participants standard 
errors (top and bottom edges of boxes). The dashed line marks 
chance performance (50% correct). Asterisks indicate significant dif-
ferences between mean performance and chance (*p < .05, **p < .001).
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Fig. 4. Tactile sensitivity and location discrimination under control conditions. Tactile sensitivity (a), as measured by bias-free d′ rates, is 
shown separately for trials with transcranial magnetic stimulation (TMS) of a control site 5 cm caudal to the primary somatosensory cortex 
and trials with no TMS. The percentage of correct localization responses (b) for trials on which the participants reported not feeling the 
tactile stimulus is shown for both the no-TMS and control TMS conditions. Colored dots are data points for each participant, and the box-
plots illustrate the condition means (center lines) and standard errors of the mean (top and bottom edges of boxes). In (b), the dashed line 
marks chance performance (50% correct). The asterisk indicates a significant differences between mean performance and chance (p < .05).
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2003). When TMS was over the cortical control site that 
did not produce tactile suppression, discrimination per-
formance was not significantly greater than chance, t(3) = 
0.67, p = .549, Cohen’s d = 0.34, −2.87 ≤ d* ≤ 3.54.

Discussion

These results provide the first demonstration of numb-
sense in normal participants using the noninvasive 
brain-stimulation technique of TMS. The disruption of 
S1 with TMS, but not a control site, caused an inability 
to consciously detect tactile stimuli on the contralateral 
hand. These results are consistent with those of previ-
ous studies using TMS to disrupt somatosensory per-
ception (Andre-Obadia et al., 1999; Cohen et al., 1991; 
Pascual-Leone et al., 1994; Seyal et al., 1992) and dem-
onstrate a critical role of S1 in conscious touch percep-
tion. These results also add to evidence showing that 
S1 contributes to somatosensory processing involved 
in one-interval forced-choice detection tasks (Tamè & 
Holmes, 2016).

As suggested by findings of TMS-induced blindsight 
after stimulation of the primary visual cortex (Boyer et al., 
2005; de Graaf et al., 2011; Jolij & Lamme, 2005; Ro et al., 
2004), the current results demonstrating TMS-induced 
numbsense suggest alternative somatosensory pathways 
that process different attributes of touch and highlight 
the importance of S1 for conscious perception. One can-
didate pathway that may be responsible for numbsense 
is a direct projection from the thalamus to the secondary 
somatosensory cortex (S2) in the parietal operculum. The 
existence of a thalamocortical pathway projecting from 
the lateral posterior nucleus of the thalamus to S2 in rats, 
rabbits, cats, and marmoset monkeys has been exten-
sively described in anatomical studies (Chakrabarti & 
Alloway, 2006; Kwegyir-Afful & Keller, 2004; Murray et al., 
1992; Turman et al., 1992; Zhang et al., 2001). Although 
the existence of an equivalent pathway has not been 
demonstrated in humans, neuromagnetic measurements 
(Karhu & Tesche, 1999; Raij et al., 2008) and disruption 
of S1 and S2 with TMS (Raij et al., 2008) have shown 
simultaneous coactivation of S1 and S2 from median 
nerve stimulation, providing further evidence for parallel 
processing in the somatosensory cortex.

Another candidate mechanism may involve the pos-
terior parietal cortex. In monkeys, there is a pathway, 
likely an ascending somesthetic projection, between 
the lateral posterior nucleus of the thalamus to Areas 
5 and 7 of the posterior parietal cortex ( Jones et al., 
1979; Pearson et  al., 1978). Although an analogous 
pathway has yet to be demonstrated in humans, the 
role of the posterior parietal cortex, and specifically of 
the left inferior parietal lobule and the bilateral precu-
neus, was demonstrated for tactile finger identification 
(Rusconi et  al., 2014). Future studies should aim to 

measure the differential contributions of these pathways 
to the unconscious localization of touch.

Importantly, the original reports of numbsense (Paillard 
et al., 1983; Rossetti, 1998, 1999; Rossetti et al., 1995) 
demonstrated the loss of touch detection despite the 
ability to unconsciously point to the location of the 
stimulus on the body. In these case studies, the ability 
to verbally report the location of the stimulus was at 
chance. Brochier et al. (1994), however, demonstrated 
the loss of touch detection with above-chance verbal 
reports of location. These different cases highlight a 
range of residual abilities preserved in numbsense that 
may rely on different neural mechanisms and are remi-
niscent of the distinction between action blindsight and 
perceptual blindsight (Danckert & Rossetti, 2005). Assess-
ing whether pointing responses might be more preserved 
after disruption of S1 would be an interesting follow-up 
study that would provide further insights into the neural 
mechanisms of this TMS-induced numbsense.

Using near-threshold tactile stimuli, we also mea-
sured unconscious touch-location discrimination on trials 
without TMS (see Fig. 4b), similar to results demonstrat-
ing blindsight in normal observers (Kolb & Braun, 1995; 
but see Morgan et  al., 1997; Robichaud & Stelmach, 
2003). Despite this loss of tactile awareness without 
TMS, touch discrimination in the two-choice task was 
significantly higher than chance performance. This may 
reflect a more general dissociation in perception 
between detection and discrimination tasks that is inde-
pendent of the numbsense induced by TMS of S1 (e.g., 
differences in thresholds for detection vs. discrimina-
tion tasks). In fact, the significant TMS × Detection 
interaction in the GLMM analysis of discrimination per-
formance suggests that these two distinct unconscious-
discrimination phenomena may reflect unique neural 
and perceptual mechanisms. The above-chance uncon-
scious tactile discrimination without TMS may reflect a 
general unconscious-perception effect that includes S1, 
whereas the numbsense from S1 disruption with TMS 
likely reflects neural mechanisms that encode tactile 
location without S1 and awareness. Further research 
will be necessary to more precisely determine how 
unconscious location discrimination without S1 may 
overlap and differ from unconscious location discrimi-
nation in general.

It is important to note that we used a functional-
localization procedure to delineate an optimal site in 
each participant to produce an attenuation in somato-
sensory sensitivity in the main condition of this experi-
ment. Unlike in studies using structural or functional 
MRI, this functional-localization procedure provides a 
more definitive, causal delineation of the somatosen-
sory cortex. Thus, even though our localization proce-
dure positioned the TMS coil in a more caudal and 
dorsal location than in other studies (Holmes & Tamè, 
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2018; Holmes et  al., 2018), our functional TMS coil-
positioning procedure ensured adequate suppression of 
tactile stimuli for both the index and ring fingers. The 
MRI scans of four of our participants validated that our 
coil was positioned over the caudal regions of the post-
central gyrus and ensured that the induced current from 
the TMS was affecting S1.

In conclusion, after we disrupted neural processing 
in S1 using single-pulse TMS, thereby suppressing tac-
tile awareness of a stimulus on the contralateral hand, 
participants were nevertheless able to accurately dis-
criminate the location of the stimulus on the hand at 
significantly above-chance levels. This is the first dem-
onstration of numbsense in normal participants with 
transient and reversible virtual lesions of S1. These 
results suggest that somatosensory regions beyond S1 
can process location of touch on the body in the 
absence of conscious awareness.
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