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ABSTRACT This paper describes a new posed multimodal emotional dataset and compares human emotion
classification based on four different modalities - audio, video, electromyography (EMG), and electroen-
cephalography (EEG). The results are reported with several baseline approaches using various feature
extraction techniques and machine-learning algorithms. First, we collected a dataset from 11 human subjects
expressing six basic emotions and one neutral emotion. We then extracted features from each modality using
principal component analysis, autoencoder, convolution network, and mel-frequency cepstral coefficient
(MFCC), some unique to individual modalities. A number of baseline models have been applied to compare
the classification performance in emotion recognition, including k-nearest neighbors (KNN), support vector
machines (SVM), random forest, multilayer perceptron (MLP), long short-termmemory (LSTM)model, and
convolutional neural network (CNN). Our results show that bootstrapping the biosensor signals (i.e., EMG
and EEG) can greatly increase emotion classification performance by reducing noise. In contrast, the best
classification results were obtained by a traditional KNN, whereas audio and image sequences of human
emotions could be better classified using LSTM.

INDEX TERMS Emotion recognition, data collection, electroencephalography, electromyography.

I. INTRODUCTION
In daily life, emotions are abound and there are countless
reasons for determining someone’s emotional state, includ-
ing for better communication and work efficiency. In the
product development process, product features and design
can be determined to be more suitable for users by ana-
lyzing their emotional states during their user experience.
In medical care, caregivers can provide better care to patients
if their emotional states in different situations are known.
Emotion recognition has been an important interdisciplinary
research topic in various fields, including psychology, neuro-
science, and artificial intelligence. Many emotion classifica-
tion studies use deep learning methods in combination with
state-of-the-art statistics to optimize the accuracy of emotion
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detection, and attempt to integrate multiple modalities for
better accuracy.

With increasing attention on emotion recognition, which
will be detailed in the Related Work section, many emo-
tional datasets have been collected, including both non-
physiological signals (e.g., facial expressions and speech)
and physiological signals (e.g., electroencephalogram (EEG),
electromyogram (EMG), and electrooculogram (EOG)).

The two major categories that emotion datasets usually
fall into are posed and spontaneous expressions [1]. Posed
expressions are more intense and less ambiguous, where the
test subjects receive instructions to act or perform an emotion.
Spontaneous expressions contain more valuable information
on natural expressions, but are more difficult to evaluate than
posed expressions, and the results rely on the subject’s self-
report, which may introduce potential differences between
the actual and reported emotions experienced [2].
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Deliberate behavior is often exaggerated and may fail to
generalize to real-world behavior [3]. Posed emotions were
widely used in 22 dynamic facial expression datasets [4].
Unlike these posed facial expression datasets, spontaneous
expressions are more widely used in physiological emotion
datasets, in which music or video clips are often used to
elicit subjects’ emotions. For example, some datasets col-
lected subjects’ self-reports on valence and arousal levels on
a continuous scale, and these values can be used to categorize
emotion [5], [11], [13]. However, there could be errors in
the subjects’ self-assessment reports, and the same emo-
tions from different subjects could have different valence and
arousal levels. Posed emotions are more systematically con-
trolled and contain direct correspondence between the col-
lected data and its associated emotions. Therefore, databases
with deliberately posed emotions are typically more reliable
for obtaining multimodal data and providing higher accuracy
in emotion recognition [6].

Although there are many emotional datasets, multimodal
emotional datasets, particularly those that include physiolog-
ical data collected from posed emotions, are still deficient.
In this study, we collected a new posed multimodal emotion
dataset called PME41 to study emotion recognition from both
non-physiological (audio and video) and physiological sig-
nals (EEG and EMG). The video consists of image sequences
of actors producing facial expressions and audio speech while
uttering a generic sentence, ‘‘The sky is green.’’. EEG sig-
nals reflect brain activity and EMG signals reflect facial
muscle movements during these utterances. Each modality
has its unique contribution to emotion recognition and might
have various impacts at different emotion processing stages
(i.e., pre-speech, during-speech, and post-speech). Hence,
instead of aiming to improve existing emotion recognition
methods, our goal is to provide a new posed multimodal
emotional dataset to the research community with different
feature extractors and machine learning models across the
four modalities to classify emotional expressions.

The key contributions of this work include: 1) A new posed
multimodal emotion dataset with four modalities (PME4):
audio, video, EEG, and EMG; 2) A thorough comparison and
analysis of a set of state-of-the-art data pre-processing and
feature extraction techniques for each modality (including
bootstrapping, principal component analysis, convolutional
autoencoder, and/or mel frequency cepstral coefficients);
3) Comparisons of a few baseline machine learning methods
(KNN, SVM, Random Forest, MLP, CNN, LSTM) to classify
emotions with optimal features; and 4) A comprehensive
survey of emotion recognition in terms of datasets, features,
and recognition methods.

The remainder of this paper is structured as followed.
First, the existing emotion datasets, feature extraction tech-
niques, and emotion classification methods are described in

1The PME4 Dataset can be accessed and downloaded for research pur-
poses at https://doi.org/10.6084/m9.figshare.18737924, and the code is avail-
able at https://github.com/jinchen1036/PME4-Emotion-Recognition

Section 2. Next, we detail the data collection process for
the PME4 dataset in Section 3, followed by a discussion of
the feature extraction for each modality and classification
method in Section 4. The results and analysis of emotion
recognition for each modality are provided in Section 5.
Finally, we provide the conclusions and discuss limitations
in Section 6.

II. RELATED WORK
A. EMOTION DATASETS
With the increase in human-computer interactions, more
emotional databases are being developed to better classify
emotions, especially physiological signals. Some popular
emotion databases are listed in Table 1. The table lists these
datasets with several important aspects: the number of sub-
jects, emotion states, elicitation, data types, feature extrac-
tion methods, and classifiers. Here, we mainly focus on the
datasets; the last two aspects will be discussed more thor-
oughly later in this paper.

CK [7] and CK+ [8] are the most widely used facial
expression datasets collected by Kanade et al. [7], [8].
CK+ [8] consisted of both frontal views and 30-degree
views of 123 subjects’ facial expressions from instructions
to perform different expressions, including anger, contempt,
disgust, fear, joy, surprise, and sadness. They used active
appearance models to track the subjects’ face shape across
the image sequences, and then extracted the similarity-
normalized shape (SPTS) and canonical appearance (CAPP)
features and classified the action units (AUs) and emotions
using the linear support vector machine (SVM). The lin-
ear SVM obtained 94.5% accuracy in AU detection and
83.33% accuracy in emotion detection when using both
SPTS and CAPP, which is better than using individual
features.

Brain electrical activity measured using electroen-
cephalography (EEG) has recently become an interesting
area for detecting internal emotional states [9], [10]. Valence
and arousal are commonly used to characterize emotions.
Both the DEAP [11] and DECAF [13] datasets collected
multimodal physiological signals elicited by music videos
and/or affective movie clips. Emotion state was determined
by subjects’ self-evaluated arousal and valence scores, where
valence is associated with the level of happiness and arousal
is associated with the level of calmness [11]. The SEED
dataset [12] also used video clips to elicit emotions. However,
unlike DEAP and DECAF, each video clip is associated with
one of the three emotional states: positive, negative, and
neutral. The participants in the SEED dataset were extro-
verts with stable moods based on the Eysenck Personality
Questionnaire.

Similarly, the MPED [14] dataset also used video clips
to elicit target emotion states. The 28 video clips and their
corresponding target emotions were selected based on the
participants’ self-scoring on three psychological question-
naires on approximately 1500 video clips and evaluated using
the k-means algorithm. All four datasets consisted of 32 to 62
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TABLE 1. Summary of some emotion databases.

EEG channels or 306 MEG channels along with other physi-
cal peripheral physiological signals, as shown in Table 1.

Multiple studies have attempted to determine emotional
states based on EEG signals. Lan et al. [46] proposed the
use of an autoencoder in combination with the K-mean clus-
ter algorithm to automatically learn meaningful frequency
features from the power spectral density of EEG signals.
Zhang and Lu [12] applied a critical EEG channel selection
method based on the weight distribution of a trained Deep
Belief Network (DBN) model with differential entropy fea-
tures from five different frequency bands of the EEG signals.
This method achieved a similar accuracy (82.88% to 86.65%)
with fewer EEG channels (range of 4 to 12) compared with
86.08% accuracy using all 62 EEG channels on the SEED
dataset when classifying the three emotional states.

Lan et al. [47] used domain adaptation techniques on
the SEED and DEAP datasets to reduce inter-subject vari-
ances between subjects and technical differences between
datasets. The reported accuracies were 72.47% for SEED
and 48.93% for DEAP using maximum independence
domain adaptation (MIDA) with differential entropy fea-
tures. Soroush et al. [48] proposed an angle space reconstruc-
tion method to obtain geometrical features from the EEG
phase space. The reported classification accuracy of the four
valence-arousal spaces was 91.37% using statistically sig-
nificant features with nonlinear features extracted from the
estimated differential angle and vector length from the angle
space.

Time-frequency analysis is also widely used in EEG sig-
nal processing. In [49], the multivariate synchrosqueezing
transform (MSST) method based on continuous wavelet
transform was used to obtain features that stem from mul-
tichannel dependency in addition to mono-channel features.
The joint instantaneous frequency and bandwidth estimate
the multivariate bandwidth for all channels to partition the
time-frequency domain. This method achieved an accuracy
of 86.93% for classifying eight emotional states in DEAP.

Abadi et al. [13] used the discrete cosine transform (DCT)
feature to obtain the spatio-temporal patterns of DECAF’s
MEG data. They reported accuracies of 62% and 59% in
determining arousal and valence levels using a linear SVM
classifier.

Song et al. [14] proposed a novel attention-long short-term
memory (A-LSTM)model to extract more discriminative fea-
tures by capturing the information of interest from different
sequences using residual connections. The model also uses a
1 × 1 convolution kernel to avoid the interaction of different
channels. It achieved an accuracy of 76.06% in classifying
seven emotions from the MPED dataset with higher-order
crossing features.

Although there are many physiological emotion databases
with multiple modalities, most of them used spontaneous
expressions and relied on subjects’ self-report arousal and
valence levels. Many problems can arise when trying to
match the collected data with corresponding emotions, such
as inaccurate self-report values, differences between various
subjects’ report values for the same emotion, and multiple
emotions being elicited simultaneously [52].

Unlike other datasets, the PME4 dataset collected posed
emotions, where the subjects were asked to express their emo-
tions. All subjects were either acting students or had acting
experience, which helped to minimize variance in the data,
as actors were trained to express the exact emotions based
on the instruction. Most likely, the subjects also experienced
these emotions through embodied cognition, thus providing
more comprehensive matches between the collected data and
their associated emotions. PME4 is a comprehensive dataset
that consists of synchronized physiological signals and non-
physiological signals and can be used to compare emotions
expressed by subjects. This is in contrast to previous stud-
ies that typically measured physiological signals of viewers’
EEG activity in response to different stimuli intended to
elicit different emotions. As subjects were required to switch
between emotions within a short time, their physiological
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signals might not immediately reflect the instructed emotion
compared to non-physiological signals. This may be espe-
cially true for EEG signals reflecting brain activity, where an
emotional aftereffect was found in our previous study [41].
Moreover, each emotion period for all four modalities in our
PME4 dataset can be separated into three stages: pre-speech,
during-speech, and post-speech. Each stage could lead to
different classification performances in the four modalities,
especially the EEG signals during the speech stages. The
research community could find new insights by analyzing
EEG activity at different stages of various emotional states.
In addition, PME4 also consists of data from five data
collection time blocks for each subject with nearly evenly
distributed sample sizes for each emotional state, allowing
researchers to analyze how different time slots could impact
subjects’ emotions. Finally, integrated multimodalities can
improve the inference of emotional states [15], [16].

B. FEATURE EXTRACTION TECHNIQUES
Extracting meaningful features from raw data is a critical
step for emotion recognition, as classifiers cannot achieve
optimal performance with noisy and/or uninformative data.
Each modality contains different information; thus, we need
to use different feature extraction methods.

Feature transformation techniques are used to reduce
data dimensions by transforming the data into a feature
space. Principal component analysis (PCA) uses orthogo-
nal transformation to remove data redundancy by finding
the projection matrix to map the original high dimensional
feature space onto a low-dimensional component subspace.
The first component contains the most significant variance
among the original features than the second, and so on [19].
It has been applied to image and EEG pattern classifications
[9], [44], [45].

Speech signals contain significant information that can be
used to identify and understand the emotions of speakers;
however, these signals often contain ‘‘uninformative’’ infor-
mation, such as background noise and acoustic variability
across speakers. Various feature extraction techniques are
available for obtaining meaningful audio features by elimi-
nating noise, such as the mel frequency cepstral coefficient
(MFCC), perceptual linear prediction coefficient (PLPC),
linear predictive cepstral coefficient (LPCC), linear predic-
tive coder analysis (LPC), etc. [21].
MFCC is widely used in speech recognition systems

because it uses a linear cepstrum to represent an audio sig-
nal that is close to the human auditory system [11], [22].
It extracts frequency-domain features, which perform better
than time-domain features [23]. Extracting MFCCs includes
the following key steps: noise removal with a hamming win-
dow, time-domain to frequency-domain conversion with FFT,
Mel log power computation with a bank of filters, and MFCC
computation with discrete cosine transformation [24], [25].
In addition to speech signals, MFCCs can be used to extract
EMG signals from several facial muscles [26]. Studies that
appliedMFCC to EMG data for classification have suggested

that a large time frame is needed to extract a better represen-
tation of EMG features [27].
Autoencoder is a well-known sophisticated feature extrac-

tor that contains two major parts: encoder and decoder. The
encoder efficiently extracts meaningful features from the data
and the decoder reconstructs the original data from the fea-
tures extracted by the encoder. Multiple studies have used
autoencoders to extract high-dimensional EEG information
[9], [46], [50]. Convolutional autoencoder is also widely
applied in obtaining salient feature vectors from image data
[28], [29]. It uses the convolution layers to extract the signif-
icant features of the input while preserving the relationship
between the pixels and extracted features. Convolutional net-
works outperform the capturing of valuable spatial correla-
tion features of the image, and with the deeper network, they
can capture deep features [30]. The autoencoder is trained
directly in an end-to-end manner without applying regular-
ization to ensure that no features are lost between the layers.

Pre-trained CNN models are usually better at retrieving
meaningful generic features, particularly from images. The
VGG neural network (VGG16, VGG19) [53] has been widely
used in image classification and to extract image data fea-
tures for emotion recognition [54], [55]. Even though the
VGG neural network is pre-trained for object classification
of various objects rather than human images, because Ima-
geNet contains vast data samples, the convolution filters
have been trained to extract the key features of the images
of faces. It was used to extract image features for emotion
classification.

C. EMOTION RECOGNITION METHODS
Many traditional classifiers have been used in emotion recog-
nition, such as Support Vector Machines (SVM) [11], [13],
[16], [31], [42], [44], [49], K-Nearest Neighbors (KNN) [12],
[14], [31], [32], [42], Random Forest (RF) [49], [54], [57]
and Multi-layer Perceptron (MLP) [10], [48], [54]. KNN is
an intuitive and straightforward supervisedmethod that uses a
voting scheme to determine the sample class based on major-
ity voting from K nearest training samples. A SVM utilizes
a radial basis function kernel to improve the performance
of high-dimensional data. Random Forest is an ensemble
learning method consisting of multiple independent decision
trees. MLP uses nonlinear classifiers and a backpropagation
algorithm to update the network weights. For our experi-
ment, these classifiers were used as the baseline for emotion
classification.
Convolution Neural Networks (CNNs) are commonly

applied in areas related to the analysis of visual images, such
as object detection, image recognition and classification, and
facial recognition. A CNN contains convolution layers that
extract the input’s significant features while preserving the
relationship between the 2D spatial domain and extracted fea-
tures, and has been used for emotion recognition [53], [55].
We can also convert temporal data into two dimensions of
time-frequency data and then use CNN to find the relationship
between the time domain and the frequency/spatial domain
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TABLE 2. Number of trials per each subject emotion.

to determine the corresponding emotion. We used CNN as
a baseline model with strong local spatial learning ability
through its convolutional layers.
Long Short-Term Memory (LSTM) [33] is a special type

of recurrent neural network with feedback connections that
can process a sequence of data [34]. It overcomes the van-
ishing gradient problem of the traditional RNN [35] and
has shown state-of-the-art performance on time-series data,
including emotion recognition [14], [41], [56]. The RNN
unit has neurons representing the temporal dependency of a
data sequence and has a vanishing and exploding gradient
problem with a long or unstable data sequence. LSTM solves
this problem by integrating more memory gates to allow the
network to learn long sequences of temporal data. The LSTM
unit consists of a memory cell and three gates: the input,
output, and forget gates. With the additional gates, these units
can forget the previous states and update the current states
as new information is provided. The input gate controls the
effect of the input signal on the state of the memory cell.
The output gate is responsible for the change in the hidden
state based on the memory cell. The forget gate controls the
effect of the previous hidden state. In Song et al. [14], LSTM
outperformed other traditional classifiers in classifying emo-
tions.We used LSTM as a baseline model to deal with all four
modalities that are inherently time sequences.

III. DATA COLLECTION
According to psychologist Ekman [17], the six basic emo-
tions are anger, fear, disgust, sadness, happiness, and sur-
prise. Public emotion databases typically categorize five to
eight emotions. This study focuses on recognizing the six
basic human emotions in [17] plus a neutral emotion for a
total of seven emotions. Data were collected from 11 human
subjects (five female and six male individuals) who were
students in acting, after informed consent was obtained. This
study was approved by The Institutional Review Board of the
City University of New York.

To enhance the accuracy of the collected posed emotions,
all subjects had some acting experiences. Data collection took
approximately four months, and each test session for each
subject lasted for approximately two hours. The entire test

FIGURE 1. (a) EMG sensors’ position on the face; (b) EEG sensors’
position on the scalp.

session was divided into five blocks, with ten trials of each
emotion presented in random order in each block. The sub-
jects were allowed to take an optional break between blocks.
We included a large number of repetitions of each emotion for
each subject in the dataset to minimize the effects of variabil-
ity and noise. Each trial was five seconds long, with one of
the seven emotion labels presented on amonitor placed 57 cm
in front of the subject. Subjects were required to utter the
generic sentence ‘‘The sky is green’’ while mimicking the
facial expression and experience indicated by the presented
emotion label. The spoken sentence was chosen because of
its neutral content, thereby minimizing interference with any
emotion the subject was trying to experience and express.
Each emotion label was displayed for 4 seconds, and a one-
second break was provided between each emotion. Overall,
the longest time for subjects to finish speaking the sentence
was approximately 3 seconds.

Multiple issues can arise during data acquisition, such
as electrodes becoming loose, interruptions from external
sources, large head movements that prevent faces from being
fully captured in the images, etc. After removing these error
trials, 3829 trials remained across all four modalities, the
details of which are shown in Table 2.

A. AUDIO AND VIDEO
During the test session, the subjects’ facial emotional expres-
sions were video recorded with a Logitech V-UCR45 USB
webcam camera attached to a MacBook Pro 15’’ Retina Dis-
play Late 2013, and their voices were recorded using the lap-
top microphone. The laptop was placed in front of the subject
to ensure adequate quality of the acquired video and audio.
The audio signals were recorded at a 44.1kHz sampling rate
and the video frames with a resolution of 960 × 720 pixels
at 10 FPS.

B. EEG AND EMG
The EMG and EEG signals were acquired using gold-
plated surface electrodes connected to Grass amplifiers. The
EMG data were bandpass filtered online between 50 and
1000 Hz, whereas the EEG data were bandpass filtered online
between.1 and 100 Hz. We used a 5kHz sampling rate and all
electrode impedances were below 10 k� at the beginning of
the experiment.
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FIGURE 2. MFCC features of a sample trial with emotion sad with a 20ms
window, where the horizontal axis is the time in seconds and the vertical
axis is the 20 MFCCs.

The six muscles chosen for recording EMG activity were
the depressor anguli oris, zygomaticus major, levator labii
superioris alaeque nasi, levator labii superioris, procerus, and
occipitofrontalis (Fig. 1 (a)), which are the major muscles
involved in speech and associate facial actions units (AUs)
during facial emotion recognition [18]. Note that the elec-
trodes covered only half of the face; therefore, we could better
use the video data for facial expression recognition. EEG
data were collected through eight surface electrodes placed
on the scalp: F3, Fz, F4, Cz, P3, Pz, P4, and O2 (Fig. 1 (b)).
In total, we used 16 electrodes: six for EMG, eight for EEG,
one ground channel that was placed on the nasion, and two
references, placed on the left and right mastoids. All data
were referenced online to the left mastoid and re-referenced
offline to the average of the left and right mastoids.

IV. METHODS
The dataset contains both EEG and EMG signals together
with the corresponding audio-video data of the 11 subjects.
Although our sample size is small, it is on the same order
as many neuroscience experiments and the results are still
statistically significant for emotion recognition using such a
dataset.

A. AUDIO
Non-speech interval signals were meaningless and contained
noise that could affect the features used for emotion classifi-
cation. To minimize noise, we focused only on the speech
interval of audio data. We used a CNN-based audio seg-
mentation method [51] to extract the speech intervals for
each trial. After manual checking and fixing the extraction
results, the speech intervals for subjects to speak the generic
sentence ‘‘The sky is green’’ were different, ranging from
0.75 seconds to 3 seconds. Resampling speech segments with
a uniform length causes multiple problems. For example,
a high-frequency signal could alias a low-frequency signal,
which would eventually provide invalid information when

conducting feature extraction. Therefore, instead of resam-
pling, we used a 3-second speech duration interval. To extract
the 3 seconds during-speech stage, we started from the center
of the speech interval that was automatically detected using
the CNN-based audio segmentation method [51], and then
evenly expanded 1.5 seconds before the center location and
1.5 seconds after the during-speech stage.

FIGURE 3. The structure of a single LSTM model for audio or image
features. X0, X1, . . . , Xn are time interval data input to LSTM cells, for
internal 0, 1, . . . , n; where n is the number of the timesteps.

To extract audio features, each 3-second during-speech
audio sample was first normalized, and then a Hamming win-
dow was applied to remove the noise. Last, the 20 most sig-
nificant mel-frequency cepstral coefficients (MFCCs) were
extracted separately from each time interval of the Hamming
window with 20 filter banks between 300 Hz and 3700 Hz,
which are the parameters used to extract audio features by
MFCC for emotion analysis in Dahake’s work [36]. These
extracted features formed a sequence vector that embedded
both frequency (20 MFCCs) and time (number of Hamming
window intervals within the 3-second data) information.

We tried two different Hammingwindow sizes, 20ms inter-
vals with 10ms offsets and 100ms intervals with 50ms offsets,
to compare the influence of the window size on the feature
extraction performance. In total, for each trial of 3-second
speech duration, we have 299 × 20 MFCC features for the
299 20ms-window and 59 × 20 MFCC features for the
59 100ms-window.

As MFCC features contain time information, we used
LSTM for the analysis, because the LSTM architecture is
optimal for time-series prediction. As the speech duration for
each trial varied, some portions of the speech interval were
likely to contain noise. Therefore, instead of obtaining the last
output state of the LSTM, we connected the output state of
each LSTM cell (over time) to a fully connected layer (with
dense cells) and then averaged the output of the dense cells
to obtain the final prediction through softmax, as illustrated
in Fig. 3. We also applied an ensemble learning approach to
the LSTM model by training 30 simple LSTM models. Each
LSTMmodel had the same structure, as shown in Fig. 3. After
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all 30 models were trained with the same training dataset,
we took the average of the output from the softmax layer of
each model. The average result is the final probability of each
emotion class, and the emotion with the highest probability is
the final prediction of the input data.

FIGURE 4. Cropped faces from the video sequence of subject 3.

To evaluate the effectiveness of the LSTM approach,
we compared it with baseline models. These include the
KNN with K equal to 10 and using the Euclidean distance
formula to determine the nearest neighbor, Support Vector
Machines (SVMs) with Gaussian kernels, Random Forest
(RF) with 100 estimators and amaximum depth of 7 to reduce
overfitting, and a multilayer perceptron (MLP) with 512 hid-
den nodes. The input trials to these baseline models are
concatenated into one dimension with a size equal to the
number of timesteps multiplied by the number of features.

To compare the performance of different classifiers,
we used K-fold cross-validation, where K was equal to five
in our current implementation. We randomly split each sub-
ject’s emotion data samples into five subsets evenly. The split
method ensures randomness within the training and testing
datasets and maintains sufficient samples for each emotion
and subject during the training process.Most importantly, this
helps minimize information leaks and provides more accurate
results for model performance. Each subset contained either
765 or 766 samples, and the classifiers were trained using four
subsets and tested on the remaining subset.

B. IMAGE
As some subjects did not provide consent to release the orig-
inal image data, we applied multiple feature extraction meth-
ods to obtain meaningful features from the original images
to be released to the public and to train the machine learning
models rather than using the original images.

Similar to audio signal processing, we focused on the
image sequence during each trial’s utterance interval (the
during-speech stage) because it contains the most emo-
tional expression. However, there were large variations in
the lengths of the during-speech stages for the different tri-
als, and the average during-speech interval was 1.3 seconds.
To equate the speech interval for all trials, we extracted an
image sequence of 16 screenshots per trial, evenly sampled
from the central 1.5 seconds during-speechwindow at 10FPS.

Before extracting the image features, we cropped the face
area on each frame as other regions did not contain any emo-
tional information. We used the open-source MTCNN [37]
and Python face recognition library [38] built with DLib [39]
for face detection and extraction. As the existing face detec-
tion networks do not always provide 100% accuracy for

detecting the correct face region, manual correction was also
applied to fix any errors in the extracted images. Note that we
used electrode paste and transparent tape to affix the surface
electrodes to the face to collect EMG data (see Fig. 4). This
minimized occlusion of facial expressions. The cropped face
images varied in size and were converted to 224× 224 pixels
to input to the pre-trained networks.

We applied four different feature extraction techniques
to the extracted facial images: PCA, a convolutional
autoencoder, and two pre-trained networks (VGG16 and
VGG19) [53].

Each image contains three color channels; however, the
color does not have a significant influence on emotion recog-
nition. Before applying PCA, we converted all images into
grayscale and normalized the grayscale values to [0, 1]. All
images in the training set were used to calculate the PCA
transform matrix and were applied to the result matrix on
both the training and testing sets to obtain their corresponding
PCA components.

Convolutional networks should be more powerful than
PCA for obtaining significant visual features for larger
image sizes. The convolution autoencoder considers both
the encoder (shown in Fig. 5) and decoder (a mirror of
the encoder sharing the same parameters and replacing the
convolutional layers with transposed convolutional layers).
A feature vector of 2048 elements was obtained from the
output of the encoder’s final layer (dense layer) for each
image.

Images were also passed into VGG16 and VGG19 with
pre-trained weights on ImageNet to extract the features.
We used the output from the last max pooling layer with size
7× 7× 512 as the image feature because the remaining layers
were originally used for classification. We also tried to use
In-ceptionV3 [58] and ResNet50 [59], but the extraction
feature size was too large for our classifiers, so the results
are not reported.

To ensure a fair evaluation of the extracted features,
we used the same 5-fold cross-validation technique as in the
audio process. As LSTM is more powerful in dealing with
temporal features, for each of the four extracted features,
LSTM (Fig. 3) performance was compared with the baseline
methods described in the audio section.

C. EEG
The EEGdata were recorded from scalp electrodes and reflect
activity from a large number of neuron potentials. Because
the EEG signal also contains noise, extracting meaningful
information from the EEG signals can be challenging.

Scalp EEG signals are typically unstable and noisy; there-
fore, we applied several noise reduction techniques when
preprocessing the EEG data. First, the EEG data were con-
verted into voltage values and then re-referenced to the right
mastoid. Because neural activity measured with non-invasive
EEG electrodes is more robust in the 0.1 to 30 Hz fre-
quency band range, a bandpass Butterworth filter from 0.1 Hz
to 30 Hz was applied to eliminate noise and less meaningful
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FIGURE 5. Encoder structure of the CNN autoencoder for cropped face image, each convolution layer with 3 × 3 convolutional kernel.

parts of the signals. After filtering, the data were downsam-
pled from 5kHz to 1kHz for the sake of data dimension
reduction in the later steps while maintaining a high fidelity
of the neural signals.

EEG recordings often include various artifacts such as,
blinks and facial movements. Because subjects in this study
made facial expressions to convey different emotions, it was
essential to minimize the influence of these extraneous, non-
neural signals in the EEG data. Therefore, we applied an
automatic artifact detection method that removes the impact
of muscular activity in the EEG data. To remove the EMG
effect on the EEG signals, we used the AAR plug-in for
EEGLAB [40] and applied this removal process before band-
pass filtering.

FIGURE 6. Filtered EMG and EEG data of subject 4’s sample trial with the
emotion anger.

To further minimize noise, we applied a bootstrapping
method to extract EEG features, averaging overmultiple trials
of the same emotion for the same subject to obtain a more
stable EEG signal. We processed the data of all 11 sub-
jects using the bootstrapping method shown in Fig. 7. First,
we extracted each emotional state from each subject, where

the number of trials per emotion ranged from 46 to 51 (see
Table 2 ). Second, we randomly split each subject’s emotion
trials evenly into training and testing subsets, with each subset
consisting of 23 to 26 trials. After splitting the subsets for
each subject’s emotion, we randomly selected 20 trials from
each subset and averaged these trials to obtain a new sample.
The last step was repeated 400 times for the training set
and 100 times for the testing set for each subject and emotion.

The bootstrapping method results in 400× 11× 7 training
samples (400 random bootstrapping sampling, 11 subjects
and 7 emotions) and 100 × 11 × 7 testing samples and
overcomes the issue of limited trials available for training the
model. Each of the eight EEG channels contained a sequence
vector of 5 × 1000 elements (five seconds, 1000 sampling
points per second at 1kHz) and was input into the 1D
CNN model and LSTM model. Similar to image processing,
we applied PCA feature extraction methods for each EEG
channel and tested their performance with the baseline mod-
els. We obtained 50 PCA components for each EEG channel,
accounting for over 97% of the energy spectrum. We also
applied the 5-fold cross-validation technique to validate the
performance of this method, where we repeated the boot-
strapped process five times with different training and testing
subsets for each subject emotion.

We also applied the autoencoder method stated in [46] and
the K-mean cluster algorithm to extract ten features (K= 10)
for each EEG channel. The input of the autoencoder was a raw
periodogram from 0.1 to 30 Hz with a resolution of 0.2 Hz,
resulting in a vector size of 155 for each channel. Two types
of features result from this method. The first was the features
directly extracted from the hidden layer of the autoencoder,
which contained 100 features for each of the eight channels.
The second was the ten features from the 10 cluster groups
based on the similarity of the hidden layer weights for each
channel, where each feature was the average value of each
cluster group’s hidden node values.

The LSTM models were used to evaluate the features
extracted from these methods. Unlike the LSTM in Fig. 3,
we used the last output state of the LSTM layer and then
connected it to the softmax layer to obtain the emotion class
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FIGURE 7. Bootstrapping process for EEG and EMG data of a single subject.

for the EEG and EMG data because we took the entire
5-second interval for the EEG (and EMG) data as one fea-
ture vector. The eight channels of the EEG data were also
treated as eight timesteps for the LSTMmodel. In addition to
LSTM, we applied the CNN model to both EMG and EEG
features. The CNN model for the EEG PCA features is listed
in Table 3. The architecture was similar for the other input
sizes. It contains 1D convolution layer with a kernel size of 4
and stride of 2, an average pooling layer, and a dropout layer
with a dropout rate of 0.2 after the second convolutional layer.
The four baselinemodels discussed in the audio sections were
also applied for comparison with the LSTM and CNN results.

D. EMG
Like EEG, EMG data are also noisy. Thus, we applied a But-
terworth filter from 20Hz to 500Hz to EMG data to minimize
noise within the signals. The EMG data were processed using
the same bootstrapping methods as the EEG data.

We also used MFCC for EMG feature extraction because
EMG signals are often used with audio data for analysis.
Norali’s work [27] suggested that longer frame sizes better
represent EMG data. Based on [27], frame sizes of 2000ms,
4000ms, 5000ms and 10000ms result in higher accuracies.
However, each of our trials is only 5-seconds long, so we
used a 2000ms window size. We first applied a window size
of 2000ms on a single trial to extract its MFCC feature with
a 1000ms overlap. For the second method, a bootstrapping
method (Fig. 7) similar to the EEG was used, with the same
window size applied to the average 20 trials of the EMG
for the MFCC features. For the third method, instead of
averaging the 20 trials, we concatenated 20 trials to form a
‘‘super-trial’’ of a longer time that allows for a larger frame
size and used the same window size to obtain the MFCC
features.

We extracted 12 MFCCs for each EMG channel for each
time step and concatenated all the channel coefficients into
one feature vector. LSTM and CNN were used to classify the
emotion using the EMG feature vectors with an architecture

TABLE 3. CNN model architecture for EEG PCA data.

similar to that used for the EEG data. The input size for the
LSTMandCNNwas two dimensions: 12× 6 coefficients and
n time steps, based on the window size and method. We con-
catenated all coefficients together into a one-dimensional
feature vector for the four baseline models.

V. RESULTS AND DISCUSSIONS
Table 5 summarizes the emotion recognition results for the
four sensory modalities with various feature extraction meth-
ods and classifiers (four baseline models and three deep
learning methods). We discuss the details of each modality
below.

A. AUDIO
Table 5 shows that the best classification model for audio
data with MFCC coefficients was the ensemble method
with 30 LSTM models for both window sizes. For the 20ms
window, we obtained an average accuracy of 71.32% and
an average accuracy of 69.60% for the 100ms window. This
performance is better than that of all the other baseline
models, which have accuracies between 42.7% and 56.57%.
To statistically validate that the LSTMmodel performs better
than other baseline models, we compared the LSTM with
the most accurate baseline model (SVM) using the t-test and
obtained highly significant p-values of 1.24e-7 and 3.99e-7
and t-values of 17.34 and 14.92 for the 20ms and 100ms
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TABLE 4. Subject’s emotion recognition accuracies (mean ± std (%)) for audio MFCC features on 20ms window using ensemble LSTM network.

windows, respectively, confirming that LSTM outperformed
the baseline models. The difference between the 20ms win-
dow and 100ms window was not significant (t = 1.7299,
p = 0.1219), suggesting that the difference in the window
size of the audio data does not have much influence on the
MFCC characteristics of the audio data. The details of the
t-test results comparing the performance of the LSTM model
with all the other models for all four modalities are shown in
Table 6.

The model can be confused between emotions that result
in similar tones. As shown in Fig. 8, emotion ‘‘fear’’ with
the lowest classification accuracy was misclassified as dis-
gust, surprise, and sadness approximately 8% to 10% of the
time. One reason could be that some subjects have over-
exaggerated voices that make the models unable to find clear
boundaries to classify these trials into the correct emotion
category. This can be further seen in Table 4, where the
model has a huge difference in predicting each subject’s
emotions, ranging from 43.4% to 86.1%. Subject 4 had the
worst accuracy, especially for the emotion ‘‘fear’’ that gets
misclassified with other emotions except ‘‘anger’’ for over
10% of the time. Each subject expresses the same emotion in
various tones and talking speeds, thus increasing the difficulty
of training a general model to adopt all varieties.

B. IMAGE
We have 224 × 224 pixel values for each image, but PCA
significantly reduces the number of values while preserving
data variability in reconstructing the image. For example,
50 PCA coefficients accounted for an average of 83.37%
of the data variance with 0.08% standard deviations. PCA
was mainly used for dimension reduction, but the CNN
autoencoder seemed to be better at extracting meaningful
spatial features as it outperformed PCA by approximately
9%, as shown in Table 5 in both MLP and LSTM. However,
MLP and LSTM have similar performances with PCA or
autoencoder features (p = 0.58 and p = 0.21). These two
feature extraction methods might not preserve the temporal
characteristics of the image sequence as trained with a small
dataset; therefore, LSTM loses its advantage.

VGG19 features were similar to VGG16 features, with
no statistical difference between the LSTM model results of
these two features (t=−0.93; p= 0.38). The VGG16 feature
with the LSTM model achieved a mean accuracy of 67.20%,
which was over 10% better than the autoencoder features and

FIGURE 8. Confusion matrix of the ensemble LSTM network for audio
MFCC features on 20ms window for individual emotion categories.

20% better than the PCA features. Features extracted from the
pre-trained models (VGG16 and VGG19) are significantly
different from those extracted from the PCA and autoencoder
trained with our dataset (with p-values between 3.14e-6 and
8.70e-7). This is because the pre-trained models were trained
with over 10k images that can learn richer image features.
With more meaningful features, LSTM outperformed MLP
by nearly 20%, as shown in Table 5.

Similar to audio, the model also has different performances
in recognizing each subject’s emotion, ranging from 46.3%
to 89.4%. Subjects with lower accuracies either showed
less-exaggerated facial expressions or ones that were over-
exaggerated. This made it difficult to distinguish between
emotions with similar facial expressions, such as fear and
surprise, sad and neutral, with a misclassification rate of
approximately 15%.

C. EEG
Without using the bootstrap method, all the models fail to rec-
ognize the emotion with EEG data. They all have accuracies
near the random guess rate (14.3%) shown in Table 5, where
the best accuracy is only 20% with SVM.

With the bootstrap method applied, there was an accuracy
increase of 15% - 20%. Surprisingly, the baseline models
either outperformed or had very similar accuracies to those
of the deep learning models. The KNN model achieved an
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TABLE 5. Emotion recognition accuracies of all four modalities.

average accuracy of 39.70% with PCA features and was
significantly better than that of the LSTMmodel (p= 5.9e-4).
Our data generated two types of features using the autoen-

codermethod [46] (Section 4.3). The first was a feature vector
of size 8 × 100 for each trial, which was the output from the
hidden layer of the autoencoder with the raw periodogram
of the EEG data as the input. The second was the average
value of the ten cluster groups of the first feature type, where
the clusters were based on the similarity of the hidden layer
weights, resulting in a vector of size 8 × 10. Unfortunately,
neither of the extracted features performed well in emotion
classification, which can be attributed to several reasons.
First, our dataset contains only eight EEG channels, which is
less than the 32 channels used in [46]. Second, our dataset has
a distinct data collection process, where the subject emotion
is posed and required to change within a short period of
time (5s), which may introduce more noise in the signals
in comparison to the SEED dataset, which used movie clips
to elicit emotions with long trial times (60s). Third, even
when we reduced noise and expanded the number of training
samples through bootstrapping, there is still insufficient data
to train the autoencoder to capture the generic features of the
EEG data.

PCA can reduce redundant information in EEG signals
and preservemeaningful information compared to the autoen-
coder method. In addition, PCA is faster and requires less
computational power than the autoencoder or raw data,
as shown in Table 7. The PCA performance was very similar
to the filtered data results and outperformed the autoencoder
features. With 50 PCA components, it preserved an average
of 97.9%data variability with a standard deviation of less than
0.1%. PCA features do not work well with the CNN model
because the CNN model can extract features from the raw
data in its convolution layers. In addition, because the input
EEG features were not temporal data, LSTM did not work
well compared to the baseline models.

D. EMG
Performance in classifying emotions based on EMG signals
was similar to that of EEG signals (Table 5 ). As we used
a window size of 2000ms, there were only four timesteps

for the single and averaged trial data, which did not provide
much temporal information for the LSTM.With concatenated
trials, which had 99 timesteps, the LSTM model showed a
slight improvement. The data used in Norali’s paper [27]
was 50 seconds in duration, but our data were only 5 sec-
onds per trial, and even with concatenated trials, signals are
not consecutive, which introduces errors in extracting the
MFCCs. With this limitation of a small dataset and noise
within the features, the deep learning models easily overfit
the training data and do not perform better than the baseline
models.

The bootstrap method also shows an improvement in
denoising the EMG data, with an approximately 10% accu-
racy increase using KNN for both the concatenated and
average methods. Moreover, the p-value of the KNN accu-
racy between the concatenate and average methods is 0.54,
proving that these two methods have similar performance to
the KNN model. This could be due to the similarity within
the EMG signal characteristics of the same subject emo-
tion. The average method smooths out the noise, and the con-
catenated method emphasizes the common characteristics.

E. DISCUSSION
We used general feature extraction techniques to obtain fea-
tures from the four modalities; however, when we used more
advanced and fine-tuned methods to extract task-specific fea-
tures, the models better recognized the emotions, as shown in
another of our studies [41]. Our dataset is relatively small;
therefore, it is difficult to train the CNN autoencoder to
obtain significant image features. Our previous work [41]
used pre-trained models combined with an ROI net to extract
features from the region of interest on the faces for emotion
recognition. The accuracy of the trained LSTM model was
increased by approximately 20%.

In addition to the methods discussed above, we also con-
ducted a wavelet analysis on the EEG data, which should be
more powerful than PCA and FFT in obtaining both time and
frequency domain information. We used a Morlet wavelet
at varying frequencies to extract the power at frequencies
from 1 Hz to 40 Hz over a 5-second window. The wavelet
feature vector results in a size of 8 × 40 × 5000 (8 channels,
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TABLE 6. t-test results of comparing LSTM model with others.

40 frequencies, and 5000 sampling points per 5 seconds
at 1kHz) per trial. With this large number of features per
trial and limited number of trials, it is challenging to train
the model to distinguish between different emotional states
without overfitting. The emotion recognition accuracy for
the wavelet features was 20.72% with the LSTM model.
However, our preliminary studies suggest that there might be
a delay in the brain to evoke an emotional state. As our data
can be split into three different emotional processing stages,
we will analyze the various stages of each trial in our future
work. This study aims to provide different baseline methods
along with a dataset for the research community to work on
this interesting and challenging task.

Table 7 lists the computation time required to determine
the emotion of a single trial using the best method for
each modality. All experiments were simulated in Python
on a MacBook Pro equipped with Intel Iris Plus Graphics
655, i7 CPU @ 2.7 GHz, 16 GB RAM, and 512 GB SSD.
If we apply face tracking, we can reduce the time required
for face detection in each image. Overall, our method does
not require a large amount of computational power and has
a large potential in many applications. For example, vir-
tual assistant applications can use audio and image emotion
detection to monitor user reactions, whereas portable EEG
and EMG systems can be used for online classification of
emotions based on neural and muscular signals. The appli-
cation’s A/B testing can incorporate these reaction data to
achieve a better application design fit for user needs. EEG
and EMG emotion detection could also help convey the
emotions of people with various disabilities or disorders,
such as cerebral palsy or vegetative states. Even though the
emotion recognition accuracies for these two data types are
not accurate for determining which of the seven emotions
people express, we may be able to assess whether people
have positive or negative reactions. One possible disadvan-
tage of our method is that it required multiple trials for
each of the emotions. However, given the variability within
and between individuals, collecting responses on numerous

TABLE 7. Computation time (MS) of single trial using the best method of
each modality.

occasions will enhance the correct interpretation of their
emotions.

VI. CONCLUSION
This study provided baseline approaches for posed emotion
recognition based on our new dataset, PME4, using four
different modalities. We examined various feature extraction
techniques (MFCC, PCA, autoencoder, and pre-trainedCNN)
and machine learning models (KNN, SVM, Random Forest,
MLP, CNN, and LSTM) for each modality. We found that the
LSTM deep learning model performs better than the tradi-
tional KNN in classifying emotions using audio and image
sequences, as these data contain more abundant features of
human emotion. As everyone expressed their emotions differ-
ently, we found that the general model had a large difference
in determining each person’s emotions, ranging from 43.4%
to 86.1% accuracy. This problem can also be due to the fact
that we collected posed expressions instead of spontaneous
expressions, and some subjects might have overperformed or
underperformed the required expressions. As there was more
noise in the biosensor EEG and EMG data, bootstrapping
improved data stability. With 20 bootstrapped samples, the
accuracy increased by approximately 20% for the EEG and
10% for the EMG data. Our initial motivations for collecting
only eight EEG channels were to focus the EEG channels on
those that might be more influenced by the subject’s emo-
tional states and to minimize the difficulty and complexity
of biosensor data collection. We achieved 39.70% accuracy
with only eight channels of EEG data using the traditional
KNN model, which has much less data than other emotional
datasets and requires shorter computation time.
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A. LIMITATIONS AND FUTURE WORK
There are a few limitations that we facedwhile performing the
analyses, especially with biosensor data. Bootstrapping the
EEG data increased the emotion recognition performance and
focusing on the speech interval for biosensor data may also
improve the performance. However, our PME4 dataset is rel-
atively small, and because EEG and EMG data are inherently
noisy, larger numbers of trials and subjects in future datasets
may improve the classification based on these types of sig-
nals. Moreover, each person uses different talking speeds and
tones to express the same emotion. Resampling the speech
interval could introduce many problems but using the same
speech duration for all subjects includes unnecessary data that
affect the extracted features. Moreover, each experimental
session was relatively long, which might have differentially
affected the performance of each emotion at the beginning
compared with the end of the experimental session. It will be
interesting to analyze each experimental session as a function
of time to assess whether the subjects’ emotional states were
expressed evenly over five testing blocks. We could apply the
baseline model (LSTM for audio and images, KNN for EEG
and EMG) to the four modalities in each block and compare
the results to determine how time can influence the subjects’
emotions. Subjects could also experience multiple emotions
during the same trial, such as exhaustion towards the last
block. Further analysis could be performed using the initial
block as the baseline.

In the future, we plan to conduct multiple analyses.
First, we plan to compare personal identification of each
of the 11 subjects within each emotion or combination of
both person and emotion recognition to explore the differ-
ences between people and their emotions in the four different
modalities. Second, we will analyze the time course of the
physiological signals (EEG and EMG) for different emotional
states to determine whether there were differential delays in
evoking emotion in the brain. The integration of multimodali-
ties for emotion recognition is another line of future research.
We will make our dataset available for research purposes and
welcome other researchers to work on the dataset with new
ideas and improved performance.
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