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What can TMS tell us about visual awareness?
Tony Ro*

The City College of the City University of New York, New York, USA
With our eyes open, we usually have the impression that we

are consciously aware1 of our visual environment. For

example, we may appreciate and avoid obstacles in our path,

examine the colour or pattern of the shirt of a passerby, or

actively search for a missing pen by sequentially inspecting an

array of items on a desk. Thus, at any given moment, we are

typically conscious of some, albeit limited, aspect of our visual

environment. How does the human brain achieve such

a seemingly simple, yet truly remarkable feat?

Patients with focal brain damage have offered unique and

some of the most definitive insights into the underlying neural

basis of cognition. From decision-making impaired and

personality disordered Phineas Gage (Damasio et al., 1994), to

blindsight patients DB and GY (Weiskrantz, 1996), to one of our

recent patients SR, whose small ventrolateral thalamic lesion

has left her with an acquired auditory-tactile synesthesia (Ro

et al., 2007), these lesion studies have demonstrated causal

roles that different brain regions play in different sensory and

cognitive functions. However, such detailed investigations of

brain-damaged patients have also frequently revealed

a remarkable degree of alterations in cognitive function over

the many years of testing after brain damage. For example,

after decades of testing, GY appears to have some improved

abilities to at least report some visual events in his affected

field (Cowey, 2004), perhaps due to extensive practice, and SR

now reports the ability to feel sounds primarily in the con-

tralesional half of her body (Ro et al., 2007). Although such

sensory changes may provide important information about

some of the neural mechanisms of plasticity, since changes
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likely reflect reorganisation of brain function over time, they

also complicate examinations of sensory processing and

visual awareness.

Unlike in patients with brain damage, however, examining

brain function, and in particular, visual awareness with

transcranial magnetic stimulation (TMS) provides a unique

opportunity to examine the effects of reversible visual cortex

disruption on visual information processing (see Fig. 1). In

addition to providing a within-subject control, the use of TMS

also drastically reduces or eliminates any opportunities for

neural plasticity. Thus, the precise contributions of different

cortical regions towards visual awareness can be readily

elucidated with TMS. Taking this approach, Amassian et al.

(1989) first showed that visual processing could be suppressed

when TMS is delivered over the occipital cortex within a brief

time window after the onset of a briefly flashed visual stim-

ulus (for a recent review, see Kammer, 2007). Subsequent

studies have shown that motion perception can be disrupted

with TMS of the human analogue of the middle temporal (MT)

area of the monkey (Beckers and Homberg, 1992; Beckers and

Zeki, 1995; Hotson et al., 1994; Walsh et al., 1998). Further-

more, TMS of the posterior parietal cortex can produce visual

extinction of a contralateral visual target during double

simultaneous stimulation (Pascual-Leone et al., 1994; but see

Chambers et al., 2006), a consequence of ipsilateral hyper-

orienting towards sensory events after parietal TMS (Seyal

et al., 1995; Hilgetag et al., 2001; Chambers et al. 2006; Blan-

kenburg et al., 2008). These earlier studies demonstrate that

TMS can be systematically used to produce unawareness of
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visual events and provide converging and replicating evidence

with patient studies.

More recently, several studies have been demonstrating

the mechanisms in which the primary visual cortex leads to

visual awareness. By using single-pulse TMS, which can

provide excellent temporal as well as spatial information

regarding brain function, it has been suggested that inter-

hemispheric connections (Silvanto et al., 2007) and especially

feedback projections to V1 (Pascual-Leone and Walsh, 2001;

Silvanto et al., 2005a, 2005b; Ro et al., 2003) are important for

visual awareness, as studies using other techniques have also

suggested (Hupe et al., 1998; Lamme and Roelfsema, 2000;

Fahrenfort et al., 2007; Super et al., 2001). For example, in one

of our studies we have demonstrated using metacontrast

masking in conjunction with TMS that feedback of informa-

tion to V1 is critical for visual awareness (Ro et al., 2003). When

TMS was applied after a visual target and subsequent mask,

visibility of the mask was suppressed by the TMS. Impor-

tantly, the magnitude of this mask suppression was greater on

trials with a preceding target in comparison to trials when

a preceding visual target was not presented, indicating that

the prior visual target information was interacting with and

affecting later processing of the mask in V1. Since visibility of

the preceding visual target was better when the mask was

suppressed by the TMS, our results cannot be explained by

processing solely within V1, but rather indicate that feedback

activity to V1 is essential for visual awareness.

In addition to feedback activity for visual awareness,

recent studies are also suggesting that low levels and phase of
Fig. 1 – A depiction of the effects of TMS of the visual cortex on

applied over the visual cortex, the induced current transiently s

figure. Before the TMS and shortly after it, vision is or returns t

comparisons of normal and disrupted primary visual cortex fun
alpha activity in V1 are also important indicators of awareness

of visual events. In a recent study, we have provided evidence

that pre-stimulus alpha levels and phase can predict visual

awareness of a metacontrast-masked target (Mathewson

et al., 2009). When alpha activity is low and in phase with

target stimulus presentation, visibility of a masked target is

increased in comparison to trials with high and out of phase

alpha activity. Our results dovetail with a recent study

demonstrating that TMS-induced phosphenes are more

visible when levels of alpha activity are low (Romei et al.,

2008). As a whole, these investigations of visual awareness

with single-pulse TMS provide new and important insights

into the critical and essential role of V1 in visual awareness.

Even when TMS over V1 is used to induce visual

unawareness and suppression, there is now strong evidence

that visual information can be processed unconsciously. As in

patients who have primary visual cortex damage with above-

chance discrimination abilities, subjects who have visual

cortex suppressed with TMS, and are therefore transiently

blind, are still able to process information at remarkably high

levels without any awareness. For example, in one study,

despite unawareness of the orientation of a line in one

experiment and unawareness of the colour of a dot in another

experiment, subjects were nonetheless able to guess the

orientation and colour of these stimuli presented within their

TMS-induced scotomas at well-above chance levels (Boyer

et al., 2005; also see Jolij and Lamme, 2005 for a demonstration

of affective blindsight). Since this orientation and colour

information could not have been processed within the
visual information processing. When a single TMS pulse is

uppresses vision, as illustrated in the top portion of the

o normal (bottom portion), allowing for within-subject

ction.



c o r t e x 4 6 ( 2 0 1 0 ) 1 1 0 – 1 1 3112
suppressed primary visual cortex or the superior colliculus,

the latter of which cannot process colour or orientation

information, these results implicate a geniculoextrastriate

pathway that bypasses V1 and projects directly from the

lateral geniculate nucleus (LGN) into extrastriate cortex, likely

area V4. A direct anatomical pathway from LGN to V4 has been

demonstrated in lower primates (Fries, 1981; Yukie and Iwai,

1981), with our TMS results implicating the existence of such

a pathway in humans as well. Our results further suggest,

however, that information relayed through this pathway is

unconscious, at least without a functioning V1.

In another study using TMS to examine unconscious visual

processing, we have shown that unconscious visual infor-

mation can nonetheless affect saccadic eye movements (Ro

et al., 2004). On the critical trials of that study, we presented

a visual distractor within a TMS-induced scotoma. Despite

unawareness of that distractor due to TMS over primary visual

cortex, saccades to peripheral targets were significantly

delayed when these ‘‘blind’’ distractors were presented.

Importantly, manual button press responses were not

affected by the unconscious distractors, implicating a role of

the superior colliculus, via the retinotectal pathway, which is

involved with saccade generation (Munoz and Wurtz, 1995b,

1995a; Robinson and McClurkin, 1989), in these effects.

In a more recent study, I examined whether this uncon-

scious visual information within the retinotectal pathway

may be relayed to and processed at higher cortical levels (Ro,

2008). Anatomical studies have shown projections from the

superior colliculus into the posterior parietal cortex via the

pulvinar (Kaas and Huerta, 1988). Since the posterior parietal

cortex is a part of the dorsal processing stream shown to be

involved with visually guided reaching (Goodale and Milner,

1992; James et al., 2003; Pisella et al., 2000), I assessed whether

visually guided reaching could be affected by unconscious

visual distractors. As with saccades, reaching towards

peripheral targets was affected by distractors that were

rendered unconscious by TMS of the primary visual cortex.

These results suggest that visual information within the

dorsal stream is also unconscious, as others have also

demonstrated (Goodale et al., 1991).

Taken together, these investigations using TMS to examine

visual awareness have provided rich and previously unob-

tainable information regarding the neural mechanisms for

conscious and unconscious vision. In addition to pinpointing

the areas of cortex necessary for visual awareness, TMS has

provided important temporal processing information for

visual awareness, as well as the functional nature of different

visual anatomical projections. Future studies using TMS to

examine the visual system should provide further details

about the different brain regions, anatomical pathways, and

processing mechanisms for visual awareness.
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